Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons.

نویسندگان

  • W D Yao
  • C F Wu
چکیده

Auxiliary Hyperkinetic beta subunit of K+ channels: regulation of firing properties and K+ currents in Drosophila neurons. Molecular analysis and heterologous expression have shown that K+ channel beta subunits regulate the properties of the pore-forming alpha subunits, although how they influence neuronal K+ currents and excitability remains to be explored. We studied cultured Drosophila "giant" neurons derived from mutants of the Hyperkinetic (Hk) gene, which codes for a K+ channel beta subunit. Whole cell patch-clamp recording revealed broadened action potentials and, more strikingly, persistent rhythmic spontaneous activities in a portion of mutant neurons. Voltage-clamp analysis demonstrated extensive alterations in the kinetics and voltage dependence of K+ current activation and inactivation, especially at subthreshold membrane potentials, suggesting a role in regulating the quiescent state of neurons that are capable of tonic firing. Altered sensitivity of Hk currents to classical K+ channel blockers (4-aminopyridine, alpha-dendrotoxin, and TEA) indicated that Hk mutations modify interactions between voltage-activated K+ channels and these pharmacological probes, apparently by changing both the intra- and extracellular regions of the channel pore. Correlation of voltage- and current-clamp data from the same cells indicated that Hk mutations affect not only the persistently active neurons, but also other neuronal categories. Shaker (Sh) mutations, which alter K+ channel alpha subunits, increased neuronal excitability but did not cause the robust spontaneous activity characteristic of some Hk neurons. Significantly, Hk Sh double mutants were indistinguishable from Sh single mutants, implying that the rhythmic Hk firing pattern is conferred by intact Shalpha subunits in a distinct neuronal subpopulation. Our results suggest that alterations in beta subunit regulation, rather than elimination or addition of alpha subunits, may cause striking modifications in the excitability state of neurons, which may be important for complex neuronal function and plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O3: Pharmacological Modulation of Thalamic KCNQ-Potassium Channels: Insight from Knock-out Mice

The channels belonging to the KCNQ gene family consist of 5 different subtypes, which assemble as pentameric channels. The KCNQ2-5 subunits are highly expressed in the ventrobasal thalamus (VB) where they function primarily as KCNQ2/3 heteromers. They underlie an outward potassium (K+)-current, called M-current (IM), which provides a hyperpolarizing drive, thus regulating neuronal excitability....

متن کامل

Drosophila cacophony channels: a major mediator of neuronal Ca2+ currents and a trigger for K+ channel homeostatic regulation.

The cacophony (cac) locus in Drosophila encodes a Ca2+ channel alpha subunit, but little is known about properties of cac-mediated currents and functional consequences of cac mutations in central neurons. We found that, in Drosophila cultured neurons, Ca2+ currents were mediated predominantly by the cac channels. The cac channels contribute to low- and high-threshold, fast- and slow-inactivatin...

متن کامل

Differential contributions of Shaker and Shab K+ currents to neuronal firing patterns in Drosophila.

Different K(+) currents participate in generating neuronal firing patterns. The Drosophila embryonic "giant" neuron culture system has facilitated current- and voltage-clamp recordings to correlate distinct excitability patterns with the underlying K(+) currents and to delineate the mutational effects of identified K(+) channels. Mutations of Sh and Shab K(+) channels removed part of inactivati...

متن کامل

Distinct roles of CaMKII and PKA in regulation of firing patterns and K(+) currents in Drosophila neurons.

The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and the cAMP-dependent protein kinase A (PKA) cascades have been implicated in neural mechanisms underlying learning and memory as supported by mutational analyses of the two enzymes in Drosophila. While there is mounting evidence for their roles in synaptic plasticity, less attention has been directed toward their regulation of neurona...

متن کامل

Is resurgent Na+ current an alpha-subunit-specific property? Maybe not. Focus on "Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice".

During the past quarter century Na channels have slowly but steadily revealed their kinetic complexity and diversity. Far beyond the one-trick pony of the Hodgkin-Huxley Na channel that rapidly activates and inactivates to produce action potentials, Na channels continue to display an ever-increasing variety of kinetic properties such as persistence, slow-inactivation, and most recently “resurge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 81 5  شماره 

صفحات  -

تاریخ انتشار 1999